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LETTER TO THE EDITOR 

The coherent tunnelling propagator and chaotic bistability 

H Dekker 
Physics and Electronics Laboratory FEL-TNO, PO Box 96864, Den Haag, The Netherlands 

Received 11 August 1986 

Abstract. The tunnelling propagator is determined by means of an explicit evaluation of 
the small energy level splittings for ground state as well as excited state doublets in a 
symmetric double-well potential. Squeezing the initial state is shown to generate consider- 
able chaotic tunnelling features, which are conjectured to involve a fractal dimension. 

In a previous letter [ I ]  the energy level splitting AE, for the lowest lying doublet in a 
bistable potential U ( x )  has been obtained by means of a simple explicit formula rather 
than by either employing a subtly detailed asymptotic connection procedure for the 
wavefunctions in between the potential minima and the barrier peak or by applying 
the contextually rather awkward instanton method [2]. If the system (the particle, 
say) is prepared at time t = 0 in precisely one of the two local ground states, then the 
particle travels back and forth between the potential minima as? x ( t )  = x(0) cos(Awot), 
where x(0) = * a  and A w , =  A‘,/ h. The classic microscopic example is the ammonia 
inversion, but modern dissipation-free superconducting Josephson interference devices 
( S Q U I D )  should present a promising macroscopic paradigm [3]. 

However, the level splitting, which is due to the finiteness of the barrier, is of course 
not restricted to the local vacuum but also exists for the excited states. If the width 
of the initially prepared local wave packet is squeezed [4] in comparison with the 
ground state Gaussian, the excited state splittings are necessarily involved in the ensuing 
tunnelling dynamics. 

It will be shown that the method of [ l ]  is perfectly tailored to the determination 
of the higher tunnelling frequencies, which d o  not seem to be available elsewhere. 
Using these results, the tunnelling propagator is evaluated. Although throughout the 
observed x( t )  is given by a coherent$ superposition of cosine functions, the spectrum 
is such that a plot of position against time acquires substantial chaotic features [5] 
upon squeezing the initial state. 

For a barrier with a height§ U,  which is large compared to the local ground state 
energies E ,  = Eo = hwo, where wo represents the harmonic oscillator frequency of the 
potential wells, it suffices to use the semiclassical wavefunctions (see e.g. [6]) in the 
barrier peak region. Through first order in hwo/U,<< 1, one may readily present the 
globally even and odd solutions in the following form: 

$2” ( X )  = [ 2 U (  x ) ] - ” ~  cosh[ - ( n  + 4)007( X)  + jS( x)/ h ]  
(1) 

(L2,,+,(x) = [ 2 U ( ~ ) ] - ” ~ s i n h [  - (n+t)w,7(x)+tS(x)/h]  
+ As it is unlikely to be misunderstood, the quantum mechanical brackets on x ( f )  have been omitted. 
t Coherent is used in this context in the sense of non-stochastic, non-dissipative, time reversible. 
§ Throughout the particle mass m = I ,  for convenience, so that potential height equals energy difference. 
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where n = 0,1,2,. . . , and 

(2U(x‘))l/’dx’ ~ ( x )  = (2) 

By symmetry one may confine oneself to, say, positive x. When x +  a, i.e. towards a 
potential minimum, it suffices to keep only the leading exponential exp(iS,/ h ) ,  with 
So= S ( a ) ,  from the hyperbolic functions. In  addition, it is important to observe that 
in this region T ( X )  behaves like 

T(x)+ T ~ + W O ’  1 n [ a w ~ / ( 2 ~ ( x ) ) l ~ ’ ]  (3) 

which implicitly defines 7,. Inserting all this into (2.1), setting U ( x )  -;w:(x - a)’ in 
the logarithm in (2.3) and defining the local coordinate 7 = ( ~ ~ / h ) ’ / ’ ( x  - a ) ,  it is easily 
seen that i,h2,,(x) = I + ~ ~ , , + ~ ( X )  acquires a prefactor proportional to 7“ upon the approach 
of the parabolic well region. Hence, both functions smoothly connect with the local 
eigenfunction belonging to the nth excited local oscillator state, as follows: 

where H n ( 7 )  is the nth degree Hermite polynomial, while (L2n+l(~)  = 1 4 ~ ~ ( x )  here. This 
is as much as is needed for the evaluation of the level splitting by means of the method 
of [ l ] .  

Using (Clzn(O) and +in+l(0) from ( l ) ?  in the numerator, and inserting I)~,,(X) and 
I , ~ ~ ~ + , ( X )  from (4) into the integral in the denominator of the simple formula 

for the level splitting A E 2 n  = E 2 n + l  - E2,,, one may write the result in the form 

Am2,, = ( G Z n / r )  exp(-So/h) (6) 

where A w Z n  = A E 2 , /  h, and where the attempt frequency [ 1 1  for the nth doublet will be 

(7)  

As it should, this Go agrees with the result of [ 11. 
The time evolution of any initial wave packet 4 ( x )  is dictated by the propagator 

1 / 2  2 n  
G n  =Go[a exp(wo.ro)(2w0/h) 1 / n !  

with Go = 2aw0 exp(woTo)( moo/ 

~ ~ 7 1  

which can now be calculated by means of the results given above. For 4 ( x )  we take 
the Gaussian wavepacket 

&(x)  = [mi e x p ( - 2 ~ ) / w ~ I - ” ~  exp[ - f v 2  e x p ( 2 ~ ) I  ( 9 )  

t In t&+,(O), the prime denoting differentiation WRT x, terms of relative order hwo/ U,<< 1 are disregarded. 
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which is centred at a potential minimum, and  where R is a squeezing parameter [4]. 
Multiplying (8) by 4(x’ ) ,  integrating over x’ using the normalised versions of (4) and 
invoking formula 7.374.4 from [8], one findst 

cs 

4(x, t ) =  AZn[$4n(x) exp(-i&,t/h)+ $4n+l(X) exp(- iE , ,+~t /h) l  (10) 
n =o 

where A,, = {[(2n)!]”2(4 tanh R)”}[ n !(2 cosh R)1’2]-1. Integrating the probability 
density P(x, t )  = I ~ ( x ,  t)12 over either positive or negative values of the coordinate, 
and once more using the functions (4), it is easy to obtain the probability Po( t )  to still 
or again find the particle in the initial well at time t s O .  In this letter we confine 
ourselves to presenting the ensuing expectation value$ of x( t ) .  

As before dropping the expectation brackets for convenience, the result§ becomes 
X 

x(t)/x(O) = 1 2A:, cos(Aw4,t) (11) 

where the coefficients (respectively the frequencies) can be found in (10) (respectively 
(6)). As it should, at zero squeezing (i.e. R = 0) all A,,, = 0 except A.  = 1 /42  and (1 1) 
properly reduces to the well known single cosine. 

The summations should be handled with discretion, primarily as they involve the 
parabolic approximation for the potential minima. But even if the global potential 
were a perfect double oscillator, the formulae for the level splittings should be expected 
to fail for levels above the barrier peak. Within the scope of this letter, however, the 
following should suffice. 

Consider from ( 6 )  the ratio A w , , , + , / h ~ , ~  = p, where we have defined the parameter 
p E (2a2w0/ h )  exp(2wo.ro). For the typical double oscillator T,, = 0 [ 11, while U,, = 
i w i a ’ ,  which makes p =4U0/hw0 .  Obviously, p >> 1. Next consider the sum in (11). 
The N t h  term involves the 2 N t h  excited doublet, which is connected with the 2 N t h  
excited oscillator states in the potential wells, i.e. with energy E,, = (2N+$)hw0.  
Requiring E Z N  s U,,, one obtains the constraint N < $p on the number of significant 
terms. On the other hand, cutting off at  the energy EZn = U, also implies a restriction 
on the amount of squeezing. Roughly keeping the energy contained in the squeezed 
initial state 4 ( x )  below the barrier energy, i.e. E(  R )  = ihwo c o s h ( 2 R ) s  U,, one obtains 
the constraint R 6 i cosh-’($). 

In figure 1 the function x( t)/x(O) has been computed11 for p = 4 6 ~ / 3  ~ 4 8 . 1 7 1 1 ,  
using N = 6 ,  at R = 1 and 2. The timescale is in units where A w o =  1. Each figure 
involves 51 sample points over 1.5 fundamental periods starting at t = 0. Hence, the 
sampling time interval equals A t  = 3a/50. As a consequence of the rather high ratio 
-p’ of successive frequencies, it is obviously difficult to resolve anything beyond the 
coherent oscillation associated with the lowest lying doublet. In particular at somewhat 
increased squeezing, the higher doublets make the trajectory look rather chaotic. 
Improving the sampling frequency reveals ever more similar structure in the figure, 
as will be shown elsewhere [9]. This being a typical feature of fractal objects 

n = O  

? Concerning [a]: one should use the revised 1980 edition here. Concerning ( I O ) :  the absence of odd-indexed 
A,,,,, is due to the symmetry of +(XI about r )  = O .  
$ Terms of relative order ( h w , /  Uo)”2 << 1 are neglected. 
§ Noticing that ( 2 n ) ! / n !  = 2”’(4),,, using either a binomial series or an elementary result from the theory of 
Gauss hypergeometric series, and invoking a simple relation for hyperbolic functions, it is easily verified 
that the R H S  of (11) indeed sums up to unity at f =0,  as it should. 
/ /  I am particularly grateful to Dr J A Boden for his generous assistance in this matter. 
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Figure 1. Expected normalised position against time of a particle tunnelling in a symmetric 
bistable potential, at two values (R = ( a )  1 and ( b )  2) of the squeezing of the initial state, 
according to formula (11) of the text. N = 6  is the number of terms in the sum carried 
along in the actual calculations. Sampling time intervals amount to A t  = 3 ~ / 5 0 = 0 . 1 8 8 5 .  
The parameter p ( = 4 6 ~ / 3 = 4 8 . 1 7 1 1  in this example) measures the height of the barrier. 
Details of such pictures (but not the conjectured fractal dimension) are particularly sensitive 
to the precise values of p and the sampling times, the sensitivity growing with increased 
squeezing. At R = 0 (no squeezing, i.e. 'ground state tunnelling') the figures reduce to the 
'standard' single cosine. 

[lo] it is conjectured that the present tunnelling paths can be assigned a fractal 
dimension D, at least for not too small squeezing. Preliminary calculations seem to 
confirm this conjecture and yield, for example, D = 1.86 at R = 1 [9]. 
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